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Abstract

We introduce Holmes, a benchmark to assess001
the linguistic competence of language models002
(LMs) – their ability to grasp linguistic phe-003
nomena. Unlike prior prompting-based evalua-004
tions, Holmes assesses the linguistic compe-005
tence of LMs via their internal representations006
using classifier-based probing. In doing so, we007
disentangle specific phenomena (e.g., part-of-008
speech of words) from other cognitive abilities,009
like following textual instructions, and meet010
recent calls to assess LMs’ linguistic compe-011
tence in isolation. Composing Holmes, we012
review over 250 probing studies and feature013
more than 200 datasets to assess syntax, mor-014
phology, semantics, reasoning, and discourse015
phenomena. Analyzing over 50 LMs reveals016
that, aligned with known trends, their linguistic017
competence correlates with model size. How-018
ever, surprisingly, model architecture and in-019
struction tuning also significantly influence per-020
formance, particularly in morphology and syn-021
tax. Finally, we propose FlashHolmes, a022
streamlined version of Holmes designed to023
lower the high computation load while main-024
taining high-ranking precision.025

holmes-benchmark.github.io
026

1 Introduction027

Linguistic competence is the unconscious under-028

standing of language, like grasping grammatical029

rules (Chomsky, 1965). As language models (LMs)030

are trained on simple tasks like next word pre-031

diction (Brown et al., 2020), one might naturally032

wonder: What is the linguistic competence of033

LMs, and how do they differ? To answer such034

questions, benchmarks estimate cognitive abili-035

ties by providing textual instructions and evalu-036

Figure 1: A subset of Holmes rankings (↓) for various
evaluated LMs. FLAN-UL2 outperforms the others
overall, while different LMs prevail for the five distinct
types of linguistic phenomena.

ate LMs’ responses, as done for mathematical 037

reasoning (Cobbe et al., 2021) or factual knowl- 038

edge (Petroni et al., 2019, 2020). However, they 039

conflate latent abilities (like following provided 040

instructions) with those under test, such as under- 041

standing specific linguistic phenomena, e.g., syn- 042

tactic structures (Liang et al., 2023). As this en- 043

tanglement makes it infeasible to draw definitive 044

conclusions about distinct abilities (Hu and Levy, 045

2023), recent studies call to assess the linguistic 046

competence of LMs comprehensively and in isola- 047

tion (Lu et al., 2023; Mahowald et al., 2024). 048

In this work, we introduce the Holmes (Fig- 049

ure 2). A benchmark to assess the linguistic com- 050

petence of LMs (Figure 1) regarding numerous 051

linguistic phenomena. To fully disentangle the un- 052

derstanding of these phenomena and other abilities 053

of LMs, we use classifier-based probing (Tenney 054

et al., 2019a; Hewitt and Manning, 2019; Belinkov, 055

2022). A method that uses the LMs’ internal rep- 056

resentations of text inputs to train linear models 057

(probes) to predict specific aspects of phenomena, 058

such as words’ part-of-speech (POS). We then ap- 059
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Figure 2: Overview of Holmes (left) with the five phenomena types (right) and an example of probing-based
evaluations for part-of-speech: encoding the input tokens and predicting the POS tag for cucumber, here NN.

proximate the LMs’ grasp of these phenomena us-060

ing the probes’ performance, rigorously verified061

using control tasks (Hewitt and Liang, 2019) and062

from an information theory perspective (Voita and063

Titov, 2020). With this particular and compre-064

hensive scope, we thoroughly address the initially065

raised questions as follows:066

Meta-Study (§ 3) The review of over 270 prob-067

ing studies reveals a gap in comprehensively evalu-068

ating linguistic competence. Despite covering over069

200 probing tasks and 150 LMs, individual studies070

focus on particular tasks and LMs. As a result, only071

three LMs were probed on over 20% of the tasks,072

and one single task was evaluated for more than073

20% of the reviewed LMs. Notably, recent large074

LMs are significantly underrepresented.075

Benchmark (§ 4) To address this identified de-076

ficiency, Holmes offers a structured framework077

to assess the English linguistic competence of078

LMs comprehensively. It features 208 distinct079

datasets covering morphology, syntax, semantics,080

reasoning, and discourse phenomena, including081

previously underrepresented ones like negation or082

rhetoric in text (Liang et al., 2023).083

Results and Analysis (§ 5) From assessing 59084

LMs (Figure 1), we find that no single one con-085

sistently excels the others and that their linguistic086

competence is more pronounced for morphology087

and syntax than the other phenomena types. In-088

stead, we find model size, model architecture,089

and instruction tuning fundamentally affect their090

linguistic competence.091

First, LMs’ linguistic competence, particularly092

for morphology and syntax, scales with their model093

size. This generalizes previous findings (Tenney094

et al., 2019b; Zhang et al., 2021) beyond LMs095

with 350 million parameters. Second, contrary to096

prompting evaluations (Lu et al., 2023) and aligned097

with other work (Waldis et al., 2024a; Gautam et al.,098

2024), model architecture is critical. The linguis-099

tic competence of decoder-only LMs is less pro-100

nounced, and even 70 billion does not allow them to 101

encode linguistic phenomena of words with compa- 102

rable strength to encoder-only LMs of a similar size. 103

Third, while previous studies focused on aligning 104

LMs with human interactions through instruction 105

tuning (Ouyang et al., 2022; Touvron et al., 2023; 106

Zhou et al., 2023), we show for the first time its 107

effect on their linguistic competence. It improves 108

morphology and syntax but has mixed effects for 109

the other types of phenomena. Lastly, we contrast 110

the results of Holmes with OpenLLM (Beeching 111

et al., 2023), an extensive LM benchmark focus- 112

ing on user-centered applications like mathematical 113

reasoning. We find that Holmes provides a unique 114

but supplementary perspective, as rankings partly 115

align, especially for reasoning-related phenomena. 116

Efficiency (§ 6) Finally, to mitigate the heavy 117

computational burden of evaluating a new LM 118

on Holmes, we form the streamlined version 119

FlashHolmes by selectively excluding samples 120

not significantly influencing overall rankings (Per- 121

litz et al., 2023). Specifically, FlashHolmes ap- 122

proximates Holmes rankings with high precision 123

while requiring only ~3% of the computation. 124

We summarize our contributions as follows: 125

• Benchmark. Holmes comprehensively and 126

thoroughly assesses the linguistic competence 127

of LMs in isolation, providing substantial 128

ground for advancements in NLP. 129

• Empirical insights. Extensive experiments 130

reveal that LMs’ linguistic competence is 131

more pronounced for morphology and syntax, 132

and size, architecture, and instruction tuning 133

are crucial for LM differences. 134

• Ease of use. We provide tools to interac- 135

tively explore Holmes results and straight- 136

forward code to evaluate upcoming LMs with 137

efficiency in mind (FlashHolmes)1. 138

1Find resources at https://holmes-benchmark.github.io
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2 Preliminaries139

Language Models (LMs) Language Models140

compute probabilities for word sequences i, en-141

abling tasks such as classifying i, textual compar-142

isons between i and another sequence i′, and text143

generation based on i. We consider LMs as any144

model producing representations of input i, regard-145

less of their specific type: sparse like bag-of-words146

(Harris, 1954); static such as GloVe (Pennington147

et al., 2014); or contextualized transformer-based148

LMs (Devlin et al., 2019; Raffel et al., 2020).149

Linguistic Competence Following Chomsky150

(1965), linguistic competence is defined as the un-151

conscious knowledge of language, encompassing152

the understanding of specific linguistic phenom-153

ena, including word dependencies and their distinct154

parts of speech (POS).155

Linguistic Phenomena We define the linguistic156

competence of LMs as their ability to understand157

a diversity of linguistic phenomena. Specifically,158

we focus on five phenomena types: morphology,159

the structure of words; syntax, the structure of sen-160

tences; semantics, the meaning of words; reason-161

ing, the use of words in logical deduction and other162

related phenomena like negation or speculation;163

discourse, the context in text like rhetorical struc-164

ture. Following Mahowald et al. (2024), we catego-165

rize these phenomena types into two groups: mor-166

phology and syntax are formal phenomena, which167

include understanding grammatical rules and sta-168

tistical patterns, while functional ones (semantics,169

reasoning, and discourse) focus on practical abili-170

ties like interpreting text sentiment or detecting the171

existence of speculation.172

Datasets We define a dataset as text examples173

and labels covering a specific aspect of a linguistic174

phenomenon, like words and their POS tag. Typi-175

cally, these labels are highly unambiguous to assess176

the specific aspect under test in isolation.177

Probes Using probes, we empirically assess the178

linguistic competence of LMs regarding the fea-179

tured linguistic phenomena in Holmes. To this180

end, we employ probing tasks using the widely181

recognized classifier-based probing method (Ten-182

ney et al., 2019a; Hewitt and Manning, 2019; Be-183

linkov, 2022), or known as diagnostic classifiers184

(Veldhoen et al., 2016; Giulianelli et al., 2018).185

Running such a probing task involves training a186

probe (linear model) using the specific dataset to187

test a distinct aspect of a linguistic phenomenon 188

in isolation. Therefore, we feed the text exam- 189

ples, encoded with a given LM, as training inputs. 190

Subsequently, we use the probe’s performance to 191

approximate how an LM understands the specific 192

linguistic phenomenon under test. With a higher 193

score, we assume the embeddings embody patterns 194

relevant to this phenomenon, which enhances the 195

accuracy (Tenney et al., 2019b). 196

3 Meta-Study 197

In this section, we survey 274 studies (§ 3.1), prob- 198

ing LMs’ linguistic competence. We analyze these 199

studies regarding their evolution, covered probing 200

tasks and LMs (§ 3.2), and identify the apparent 201

need for consolidating existing resources (§ 3.3). 202

3.1 Scope 203

We analyze 28k papers (P ) from 2015 to August 204

2023 of major NLP conferences (TACL, ACL, 205

AACL, COLING, EACL, EMNLP, NAACL, and 206

corresponding workshops) expanded with selected 207

work from other venues such as ICLR. To identify 208

relevant work, we follow a semiautomatic approach. 209

First, we automatically select papers based on their 210

meta-data and full text.2 We select a total of 493 211

candidate papers matching at least one of the fol- 212

lowing three criteria (P ′ = {∀p ∈ P |p ∈ P1 ∪ p ∈ 213

P2 ∪ p ∈ P3}): 214

P1: papers contain probing or probe in the title. 215

P2: papers contain probing or probe in the ab- 216

stract and at least five times in the main content. 217

P3: papers contain probing or probe at least ten 218

times in the main content. 219

We manually verified these automatically cu- 220

rated candidates (P ′) and found 274 relevant pa- 221

pers (Pr).We selected them as they either evaluate 222

LMs regarding one or more linguistic phenomena 223

as part of the analysis or as a main contribution. 224

This involves filtering papers using the term prob- 225

ing in other senses, such as probing hash tables 226

(Bogoychev and Lopez, 2016). 227

3.2 Analysis 228

Next, we analyze these 274 relevant studies (Pr). 229

i) Scattered evolution calls for consolidation. 230

First, we analyze the evolution of the relevant stud- 231

ies. Figure 3 relates how these studies cite each 232

other (probing citations Cp) compared to other 233

2We use PyPDF2 v3.0.0, DBLP and semanticscholar API.
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Figure 3: Citation analysis considering probing citations
originating from the set of relevant work and every other
citation (general citations). The color scale indicates
the ratio (α) between them.

gathered citations (general citations Cg). Col-234

orized, we show the ratio α between these two235

measures α =
|Cp|+1
|Cg |+1 . First, only a fraction of236

the works gained general attention, as 16 papers237

exceeded 200 general citations. Further, probing238

works cite each other rather sparsely, with an aver-239

age probing citation ratio of α = 0.1. Therefore,240

we see other fields are paying little attention to241

the linguistic competence of LMs. Paired with242

scattered citation patterns, we identify the need to243

consolidate existing resources to solidly ground244

research in this field.245

ii) Probing work prioritizes tasks and analytics246

over methods. We categorize the selected work247

according to their probing focus: methodologi-248

cal, new methods, like control tasks (Hewitt and249

Liang, 2019) or minimum description length (Voita250

and Titov, 2020); task-focused assessing specific251

linguistic phenomena as main contributions, such252

as discourse relations in text (Koto et al., 2021);253

and analytical using probing tasks to analyze LMs,254

such as the impact of pre-training data (Zhang et al.,255

2021). Figure 4 shows: the majority (51.8%) of256

studies focus on specific probing tasks like numeric257

scales (Zhang et al., 2020), or morphosyntactic258

(Shapiro et al., 2021); 35.7% use probing as a sup-259

plementary analytical tool, for example, analyzing260

the effect of fine-tuning (Mosbach et al., 2020a;261

Zhu et al., 2022a); 12.5% address methodologi-262

cal problems related to probing (Wu et al., 2020;263

Immer et al., 2022; Zhu et al., 2022b).264

iii) The dominance of classifier-based probing.265

Next, we analyze the specific employed probing266

method: classifier, using linear or shallow models267

to probe internal representations of LMs, as demon-268

strated in Tenney et al. (2019a); mask, letting LMs269

fill gaps to verify linguistic phenomena, as shown270

in Talmor et al. (2020) or Warstadt et al. (2020); at-271

Figure 4: Categorization of the selected studies by their
focus and their conducted probing method.

tention, which relies on attention patterns, as used 272

in Pandit and Hou (2021) for bridging; and other, 273

methods not belonging to the previous three cate- 274

gories, such as dimension selection (Torroba Henni- 275

gen et al., 2020). Most studies utilize the classifier- 276

based probing method (74%), 20% conduct mask- 277

based probing, and only a minority of work (∼ 3%) 278

considers attention patterns or other approaches. 279

iv) Tasks and LMs are barely broadly evalu- 280

ated. Finally, we analyze which tasks and LMs 281

the relevant probing studies consider. For example, 282

Tenney et al. (2019b) considers BERT and probes 283

POS tagging, semantic-role labeling (SRL), and 284

other ones. Aggregated over all studies, we found 285

a broad coverage of 289 unique tasks and 161 dis- 286

tinct LMs. Below, we delve into the details and 287

highlight noteworthy findings. 288

We analyze how LMs and tasks are considered 289

jointly in Figure 5. Despite the broad coverage, 290

single studies, including fundamental ones, main- 291

tain a particular focus and consider only a fraction 292

of LMs and tasks. For example, while most tasks 293

(72%) were assessed on BERT, RoBERTa’s cov- 294

erage has already declined to 42%. Conversely, 295

part-of-speech tagging (POS), the most probed 296

task, was only evaluated on 23% of the LMs, 297

for example, not covering prominent examples 298

like BART (Lewis et al., 2020). Notably, more 299

recently released larger and powerful LMs, like 300

PYTHIA (Biderman et al., 2023), UL2 (Tay et al., 301

2023), or LLAMA-2 (Touvron et al., 2023), and 302

instruction-tuned LMs (FLAN-T5 (Chung et al., 303

2022), LLAMA-2-Chat (Touvron et al., 2023), or 304

TK-Instruct (Wang et al., 2022) are missing almost 305

entirely, with single more recent exceptions (Hu 306

and Levy, 2023; Waldis et al., 2024a). Again, these 307

insights underscore the need to consolidate existing 308

resources for more dense coverage. This is further 309

evident when considering Figure 5, where we sort 310

LMs and tasks according to how often they were 311

mentioned in the relevant works. Then, we plot 312
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Figure 5: Overview of how many tasks single LMs
cover and vice versa - single examples are highlighted.

Figure 6: Cumulative coverage of LMs and tasks, con-
sidering all relevant studies and their focus.

their cumulative coverage concerning all mentions.313

For example, considering all studies (red line), the314

top-10 most mentioned LMs account for 80% of315

all LMs mentions (black dot). In contrast, the other316

151 unique LMs account for only 40%. Compar-317

ing the paper focus, we see that methodological318

studies rely only on 24 LMs and 36 tasks. In con-319

trast, task-focused and analytical work covers a320

similar number of LMs (91 and 99, respectively).321

However, due to their distinct focus, task-focused322

studies cover significantly more tasks (202) than323

analytical ones (115).324

3.3 Summary325

This meta-study emphasizes the need to consolidate326

existing resources for a comprehensive assessment327

of the linguistic competence of LMs — a mani-328

fold but rather blind spot in evaluation research.329

Apart from more thorough evaluations, such a stim-330

ulus can significantly boost future research, as hap-331

pened in computer vision with ImageNet (Deng332

et al., 2009) or in NLP with GLUE and Super-333

GLUE (Wang et al., 2019a,b).334

4 Holmes Benchmark335

With Holmes, we provide an extensive ground to336

tackle these identified deficiencies in the existing337

literature and comprehensively investigate the En-338

glish linguistic competence of LMs. Specifically,339

Holmes features 208 datasets addressing distinct340

aspects of 66 phenomena covering morphology, 341

syntax, semantic, reasoning, and discourse. 342

4.1 Datasets 343

To feature a total of 208 unique datasets, we 344

leverage existing and established resources like 345

OntoNotes (Weischedel et al., 2013), English 346

Web Treebank (Silveira et al., 2014), or BLIMP 347

(Warstadt et al., 2020) and create datasets address- 348

ing phenomena like the POS of words, their de- 349

pendencies or determine the linguistic acceptabil- 350

ity of sentences. Further, we include a range of 351

less employed data, addressing contextualization of 352

words (Klafka and Ettinger, 2020), reasoning (Tal- 353

mor et al., 2020), semantic decomposition (White 354

et al., 2016; Rudinger et al., 2018a,b; Govindarajan 355

et al., 2019; Vashishtha et al., 2019), grammatical 356

knowledge (Huebner et al., 2021), bridging (Pan- 357

dit and Hou, 2021), and rhetorical (Carlson et al., 358

2001) and discourse (Webber et al., 2019) structure 359

in text. Finally, we cover rarely probed phenomena 360

like negation (Szarvas et al., 2008; Konstantinova 361

et al., 2012; Vahtola et al., 2022), or word complex- 362

ity (Paetzold and Specia, 2016). 363

4.2 Structure 364

Apart from the comprehensive scope, Holmes pro- 365

vides a clear structure for specific evaluations on 366

different levels of aggregation. We first group the 367

datasets according to the linguistic phenomena ad- 368

dressed. Then, we categorize these phenomena 369

into their previously introduced type (see § 2) - 370

morphology, syntax, semantics, reasoning and dis- 371

course. We rely on the categorization provided by 372

the specific studies whenever given. The detailed 373

categorization is given in § A.3. 374

4.3 Experimental Setup 375

Holmes evaluation follows the primarily used 376

classifier-based probing paradigm, as described in 377

§ 2. Considering the internal representations allows 378

us to maximally disentangle the understanding of 379

distinct linguistic phenomena from each other and 380

from other cognitive abilities (like following tex- 381

tual instructions). Further, this method allows us to 382

assess any type of LMs, including sparse, static, or 383

contextualized ones. Based on the specific dataset, 384

we either select the embeddings of the specific in- 385

put tokens (like single words for POS tagging) or 386

average embeddings across a span or the whole sen- 387

tence. We define a probing task as training a probe 388

fp (linear model without intermediate layers) using 389
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these embeddings as inputs and the dataset labels as390

training signals. If not defined in the original data,391

we divide the dataset samples into train/dev/test392

split following a ratio of 70/10/20. We repeat this393

procedure five times using different random seeds394

and aggregate the results afterward.395

4.4 Evaluations396

We approximate how well an LM encodes specific397

linguistic phenomena using the absolute predic-398

tion performance of the probes. In addition, we399

rigorously evaluate the reliability of probing re-400

sults using control tasks and from an information401

theory perspective (Voita and Titov, 2020; Hewitt402

and Liang, 2019). Different from commonly used403

prompting assessments, this particular evaluation404

protocol refrains from known fallacies in which the405

results and conclusions are sensible with specific406

instructions (Mizrahi et al., 2024; Min et al., 2022)407

or few-shot examples (Lu et al., 2023).408

Task Score Metric Based on a dataset’s specific409

task type, we use a corresponding performance410

measure, macro F1 for classification or Pearson411

correlation for regression. In addition, we calculate412

the standard deviation σ of the probe across mul-413

tiple seeds. A lower σ indicates a better encoding414

of a given linguistic phenomenon since the mea-415

surement is robust to noise. Further, we use the416

task score for ranking-based evaluation of all eval-417

uated LMs L = {l1, ..., lm} within Holmes. We418

calculate the mean winning rate mwr (in percent-419

age), telling us how many times one LM l1 wins420

against others (Liang et al., 2023). With a higher421

mwr, we assume an LM encodes tested linguistic422

phenomena better than others.423

Compression Next, we evaluate the probes’ reli-424

ability from an information-theoretic perspective.425

Following Voita and Titov (2020), we use the com-426

pression I to measure how well a probe compresses427

input data. A higher I means fewer bits are needed,428

indicating that the given linguistic phenomenon is429

more clearly encoded in the embeddings.430

Selectivity A reliable probe should grasp patterns431

relevant to the tested phenomena in the internal rep-432

resentations of LMs but should not be able to learn433

anything else. Therefore, we expect high perfor-434

mance when evaluating the specific dataset but low435

performance when we randomize training signals.436

We check this using control tasks introduced in437

Hewitt and Liang (2019). Specifically, we calcu-438

late the selectivity S as the difference between the 439

probe trained with the original labels y and the con- 440

trol task where we train the probe with randomly 441

assigned labels y′. With a higher S, we assume 442

the detected patterns are relevant for the specific 443

phenomena under test, as random patterns do not 444

lead to similar performance. 445

5 Holmes Results 446

Using Holmes, we evaluate a diverse collection 447

of 59 LMs.3 Using the results of these extensive 448

experiments, we first answer the research question: 449

what is the linguistic competence of LMs? In doing 450

so, we discuss the reliability of results (i), the lin- 451

guistic competence of LMs concerning the unique 452

structure of Holmes (ii), and how these results 453

relate to other downstream abilities (iii). Subse- 454

quently, we examine how linguistic competence 455

varies among LMs, as we find LMs prevailing for 456

different types of linguistic phenomena (Figure 1) 457

and delve into the effects of model architecture (iv), 458

size (v), and instruction tuning (vi). 459

i) The reliability of Holmes. First, we show 460

the reliability of probing-based evaluation, using 461

deviation σ, compression I , and selectivity S re- 462

sults in Figure 7. Single outliers are datasets that 463

are too hard for all LMs, as the sample size is too 464

small, or the linguistic phenomena under test are 465

too complex, as the ability to detect spans causes 466

speculations in a text. We average these metrics 467

for every dataset across all LMs. Note, for selectiv- 468

ity, we consider only base-sized model (10m-200m 469

parameters) for computational efficiency. 470

First, we found a low average deviation (σ = 471

0.02), indicating the high reliability of probes 472

across random seeds. These results also high- 473

light the stability of probing results, compared to 474

prompting-based ones where results across many 475

paraphrased prompts lead to a deviation of σ = 476

0.07 reported in Mizrahi et al. (2024). Next, sub- 477

stantial compression (average I = 1.9) and se- 478

lectivity (average S = 0.31) further confirm the 479

probes’ reliability. Interestingly, one identifies two 480

parallel trends for selectivity. Harder datasets with 481

many labels, like POS tagging, are arranged around 482

a selectivity of 0.1 to 0.4 and a task metric of 0.3. In 483

contrast, for easier binary classification tasks (such 484

as linguistic applicability), we observe selectivity 485

around 0.2 to 0.5 and a task metric of 0.6 to 0.9. 486

3Find a complete list in Appendix § A.2.
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Figure 7: Reliability evaluation using deviation, com-
pression (log), and selectivity on the y-axis for all 208
probing datasets. The x-axis represents the task metrics
(either person correlation or macro F1).

Further, we measure a significant (p < 0.05) pos-487

itive correlation between the task metrics and the488

compression (τ = 0.64) and selectivity (τ = 0.65).489

This further confirms our reliability assumption490

and allows us to trust the task metric as the primary491

evaluation measure.492

ii) The story of Holmes. We focus on what493

Holmes tells us in general and regarding formal494

and functional phenomena, as defined in § 2. We495

report in Figure 8 the task metric, discriminabil-496

ity, and selectivity, averaged for every phenom-497

ena type. Note, discriminability (Rodriguez et al.,498

2021) quantifies the alignment of LMs ranking of499

one specific dataset compared to the overall rank-500

ings using the Kendall Tau correlation. Consid-501

ering these three metrics, all tested LMs strongly502

encode formal phenomena (morphology and syn-503

tax), which often depend on the local neighborhood504

of words. Therefore, we assume that LMs approxi-505

mate these co-occurrences during pre-training with506

high precision. For example, the specific POS tag507

of a word, like man (noun), primarily depends on508

its surroundings, such as the frequent predeces-509

sor the. In contrast, LMs encode less information510

about functional phenomena (semantics, reason-511

ing, and discourse) since they show a relatively low512

performance regarding the task metric. For these513

functional phenomena, we assume more complex514

co-occurrences are required to capture the broad515

context in language, such as the rhetorical relation516

of two distant text spans. Despite these differences517

between formal and functional phenomena types,518

they contribute to the benchmark in a balanced519

way. A low to medium discriminability indicates520

that none of these types of linguistic phenomena521

dominates the overall LM rankings.522

This balanced influence of the five phenomena523

types is further visible when considering their rank-524

ing correlations (Figure 9, left). A high average525

correlation of 67.8 ± 6.6 with the overall results526

Figure 8: Average task metric, difficulty, and discrim-
inability for each phenomena type. The dashed lines
show the average measure over all datasets.

(last column/row) hints that they are facets of a 527

broader occurrence but share common characteris- 528

tics. Still, breaking into categories is meaningful, 529

as the phenomena types (first five columns/rows) 530

are medium correlated (average of 53.9 ± 14.5). 531

Analyzing the results of phenomena types further 532

highlights the value of this distinction. While re- 533

sults of morphology and syntax are similarly corre- 534

lated with the overall results (68.2 and 70.2), their 535

direct correlation (69.1) indicates their supplemen- 536

tary nature. Further, discourse results show the 537

lowest correlation with others (44.8± 16.1), indi- 538

cating the particular scope. 539

iii) The companions of Holmes. We analyze 540

how the results of Holmes and those from other 541

evaluations focusing on downstream applications 542

align (Figure 9, right). We select the OpenLLM 543

benchmark (Beeching et al., 2023), as it covers 544

a wide range of open LMs, in contrast to others 545

like HELM (Liang et al., 2023). First, Holmes 546

and OpenLLM results of jointly evaluated LMs 547

are medium correlated, hinting that the linguistic 548

competence of LMs is partly aligned with their 549

downstream abilities. The nature of this alignment 550

is further evident when focusing on morphology, 551

reasoning, and discourse. Interestingly, and in con- 552

trast to syntax and semantics, their correlation to 553

the OpenLLM and Holmes overall results is simi- 554

lar. Therefore, these three phenomena presumably 555

represent skills that are more tested in the general 556

benchmarks. These correlation patterns are consis- 557

tent across the three most meaningful OpenLLM 558

datasets (MMLU, TruthfulQA, and GSM8K). As 559

TruthfulQA shows lower correlations with the lin- 560

guistic phenomena and other datasets within Open- 561

LLM, we presume this dataset captures distinctly 562

different skills (possibly knowledge).4 These in- 563

sights show how different benchmarks provide a 564

different scope and supplement themselves simulta- 565

4Further, it’s also known that we need to expect this dataset
to be fully leaked (Balloccu et al., 2024).
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Figure 9: Kendall-tau correlation within Holmes (left)
and compared to the OpenLLM benchmark (right).
Green stars indicate significant correlations (p < 0.05).

neously. Further, the above analysis shows, again,566

the value of assessing the linguistic competence567

of LMs across different phenomena types, for fine-568

grained analyses.569

iv) The effect of language model architecture.570

Next, we discuss the impact of model architecture571

on the linguistic competence of LMs. In Figure 11572

(left), we compare encoder and decoder LMs. Due573

to the absence of big encoder LMs, we consider574

five encoder and six decoder LMs with up to 220m575

parameters. Encoder LMs show a higher mwr of576

52% than decoder LMs (21%). This observation577

is the most saturated for morphology or syntax, en-578

compassing a variety of token-level phenomena,579

like part-of-speech. We assume that the missing580

bi-directional encoding of decoder LMs causes this581

lower performance because the available context582

of one token heavily depends on its position. Thus,583

even common tokens, like the, have different po-584

tential representations - at the beginning or in the585

middle of a sentence. These instabilities are further586

evident when considering Figure 11 (right) which587

reports the accuracy for the top-20 most common588

POS tokens (such as the) based on the pos, xpos,589

upos dataset. Given their high frequency, one ex-590

pects stable prediction performance. Surprisingly,591

encoder LMs (BERT and RoBERTa) show higher592

median accuracy and clearly lower deviations com-593

pared to the same-size decoder counterpart (GPT2).594

While scaling model size to 12B (Pythia) and 70B595

(Llama-2) allows for improved accuracy and lower596

deviations, decoder LMs do not match the encoder597

performance, even up to 700 times bigger.598

v) The effect of scaling parameters. We dis-599

cuss how the number of parameters influences the600

linguistic competence of LMs. Given the variety601

of LMs of different sizes, we focus on the Pythia602

(decoder-only) and T5 (encoder-decoder) families. 603

From Figure 10, we observe for both Pythia and T5 604

that the linguistic competence scales with model 605

size, and it is particularly pronounced after exceed- 606

ing 0.5B (Pythia) and 1.0B (T5) parameters. Again, 607

model architecture is crucial, as T5 LMs (encoder- 608

decoder) exhibit a clearly higher mean winning rate 609

of 40− 70% than Pythia (decoder-only) ones with 610

mwr of 20− 60%. Further, we found formal phe- 611

nomena evolving differently with increased model 612

size than functional ones. Specifically, morphol- 613

ogy and syntax start at a lower level, with an ap- 614

parent performance jump after 0.5B (Pythia) and 615

1.0B (T5) parameters, followed by slow but steady 616

growth. Differently, semantics, reasoning, and dis- 617

course start at a higher mwr, followed by a contin- 618

uous improvement as the model size grows. From 619

these results, we assume more parameters allow 620

LMs to better approximate simpler co-occurrences 621

in the near neighborhood of words to understand 622

formal phenomena like word dependencies. In 623

contrast, more parameters do not have the same 624

pronounced effect on functional phenomena, like 625

rhetorical relations, which require an LM to acquire 626

more distant and complex word co-occurrences. 627

Model Morphology Syntax Semantics Reasoning Discourse Overall
Comparison against Llama-2 with 7 billion parameters

Llama-2-Chat -8% +3% -5% -9% -3% -2%

Comparison against T5 with 11 billion parameters
FLAN-T5 +10% +2% -2% +6% -2% +1%

Comparison against Pythia with 12 billion parameters
Dolly-v2 +4% -3% -9% -3% +4% -4%

Comparison against Llama-2 with 13 billion parameters
Tülu-2 +5% +2% -15% 0% -30% -8%
Orca-2 -1% -3% -4% +4% -5% -2%
Llama-2-chat +3% +1% -6% +3% -1% -1%
Vicuna-v1.5 +23% +7% -3% +6% -6% +4%

Comparison against UL2 with 20 billion parameters
FLAN-UL2 +40% +16% +7% +13% +1% +13%

Comparison against Mixtral with ~47 billion parameters
Mixtral-Instruct +4% +3% 0% +6% -2% +2%

Comparison against Llama-2 with 70 billion parameters
Tülu-2 +15% 0% -11% -3% 0% -2%
Llama-2-Chat +23% +14% +2% +4% +17% +10%

Average +10% +4% -3% +4% -2% +1%

Table 1: Effect of instruction tuning on the mean win-
ning rate compared to the pre-trained LMs.

vi) The effect of instruction tuning. Finally, we 628

focus on how instruction tuning affects LMs’ lin- 629

guistic competence and compare the tuned LMs 630

with their base models—for example, FLAN-UL2 631

vs. UL2. From results in Table 1, we note less 632

saturated effects for the overall scope while being 633

more pronounced for the five phenomenon types - 634

again emphasizing the structured and comprehen- 635

sive evaluation of linguistic competence. On av- 636

erage, we found instruction tuning has the highest 637

8



Figure 10: Effect of scaling LM parameters considering the T5 and Pythia model families providing eight and five
different sizes. We address the overall scope (left) and the different types of linguistic phenomena (right).

Figure 11: Comparison of the phenomenon types for
encoder and decoder LMs (left) and on the right, the
accuracy of the top-20 most common tokens of the three
part-of-speech probing datasets for BERT, RoBERTa,
GPT2, Pythia, and Llama-2.

effect on morphology (+10%) followed by syntax638

(+4%), reasoning (+4%), and a negative effect for639

semantics −3% and discourse −2%. These results640

confirm previous assumptions that instruction tun-641

ing updates are often superficial (Yadav et al., 2023;642

Hershcovitch et al., 2024; Sharma et al., 2023)643

and that LMs are better at mimicking language644

(formal phenomena) than understanding it, mea-645

sured with functional phenomena (Mahowald et al.,646

2024). Further, larger models benefit more from647

instruction tuning. Llama-2-70b-Chat and FLAN-648

UL2 gain up to +23% and +40% for morphology649

and +10% and +13% on average. In addition,650

decoder-only LMs (Llama-2 and Pythia) tend to651

show less pronounced positive effects than encoder-652

decoder LMs (FLAN-T5-XXL and FLAN-UL2).653

However, they better understand reasoning phe-654

nomena. When comparing LMs based on Llama-2-655

13b, we see that specific fine-tuning methods shape656

the LMs differently. The top-ranked 13b LM for657

Holmes and OpenLLM, Vicuna, was trained on658

125k instructions, less than other models. Thus,659

high quality is more important than the number of660

instructions for LMs’ linguistic competence. Tülu661

loses performance while being trained on a large662

mixture of data (approx. 330k instructions), the663

same for its 70b version. Finally, the focus of Orca-664

2 on reasoning is also reflected in its embedding665

space. These insights show again that while provid-666

ing a particular perspective, Holmes shows clear 667

differences between LMs and allows us to map 668

them to methodological decisions. 669

6 Efficiency 670

Seamless, easy, cost-effective integration of new 671

LMs is crucial for widely adopting a benchmark. 672

As Holmes covers many datasets and examples, 673

it is computationally heavy in encoding text and 674

training the probes. It takes approx. 6 GPU days 675

to encode the 70 million tokens (∼230k pages 676

of text) and 2 days to run the 208 probes for a 677

70b model. To account for this issue, we intro- 678

duce FlashHolmes, a streamlined version of 679

Holmes. It allows the evaluation of new LMs 680

with a fraction of the compute while maintaining 681

evaluation integrity. 682

Besides excluding licensed data (18 probing 683

datasets), we analyze the effect of discarding train- 684

ing instances. As a result, we reduce the compu- 685

tation for encoding and the actual probing simul- 686

taneously. We follow Perlitz et al. (2023) and cal- 687

culate the rank resolution, 95% CI of model rank 688

difference. This measure indicates the maximum 689

expected rank deviation from evaluating an LM 690

on FlashHolmes compared to Holmes. For ex- 691

ample, a rank resolution of one means that an LM 692

evaluated on FlashHolmes and Holmes has the 693

same rank or switch place with its neighbors with a 694

probability of 95%. Figure 12 shows the resulting 695

rank resolution when training only on a fraction of 696

the instances, from 1/2 to 1/512. Solely focusing 697

on efficiency (1/512) still provides a decent rank 698

resolution of ~2.7. In contrast, considering 1/2 of 699

the training data results in the best reliability of 700

~1.0. To balance benchmark reliability and effi- 701

ciency, we compose FlashHolmes using 1/32 702

of the training instances. Precisely, it reduces the 703

computation expenses of evaluating LMs to ~3% 704

of what Holmes would have required while pre- 705
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Figure 12: Analysis of the reliability vs. efficiency
trade-off when reducing the number of training data.

serving a high rank-correlation of ~1.3.706

7 Related Work707

Benchmarking LMs Benchmarks approximate708

LMs abilities like general language understanding709

(Wang et al., 2019b,a), out-of-distribution gener-710

alization (Yang et al., 2023; Waldis et al., 2024b),711

adversarial scenarios (Nie et al., 2020; Wang et al.,712

2021), or retrieval like BEIR (Thakur et al., 2021)713

or MTEB (Muennighoff et al., 2023). With the714

advent of larger LMs, the methodological focus715

shifted to prompting-based evaluations which eval-716

uate the LMs’ response to provided instructions717

(Brown et al., 2020; Hendrycks et al., 2021; Sri-718

vastava et al., 2022) covering application-oriented719

tasks (Liang et al., 2023), or mathematical reason-720

ing (e.g., GSM8K (Cobbe et al., 2021)).721

Assessing the Linguistic Competence of LMs722

The analysis of LMs’ linguistic competence ranges723

from analyzing static word vectors (Köhn, 2015),724

sentence embeddings (Conneau et al., 2018; Adi725

et al., 2017), the internals of translation models726

(Shi et al., 2016; Bau et al., 2019), or contextual-727

ized LMs (Tenney et al., 2019b,a; Hewitt and Man-728

ning, 2019). Other work addressed methodolog-729

ical aspects, such as using control tasks (Hewitt730

and Liang, 2019), assessing LMs from an infor-731

mation theory perspective (Voita and Titov, 2020;732

Pimentel et al., 2020), or evaluating causal effects733

in LMs (Elazar et al., 2021). Finally, another line734

of work focuses on whether LMs follow human735

understanding of linguistic competence when solv-736

ing downstream tasks (Belinkov, 2022; Aw et al.,737

2023; Mahowald et al., 2024). However, Mosbach738

et al. (2020b) and Waldis et al. (2024a) found fine-739

tuning for downstream tasks actually hurting the740

understanding of linguistic phenomena.741

While prior studies assessing the linguistic com-742

petence of LMs tend to focus on a limited set of743

linguistic phenomena or models, Holmes provides744

extensive coverage of both phenomena and eval- 745

uated LMs. Unlike recent evaluations based on 746

prompting methods (Blevins et al., 2023; Liang 747

et al., 2023; Amouyal et al., 2024), Holmes as- 748

sesses the internal representations of LMs directly. 749

This approach allows for detailed analysis of spe- 750

cific model characteristics, such as architecture, 751

and helps separate the linguistic competence from 752

other cognitive abilities. Thereby, we respond to 753

recent calls for a thorough and explicit evaluation 754

of linguistic phenomena (Hu and Levy, 2023; Lu 755

et al., 2023; Mahowald et al., 2024). 756

8 Conclusion 757

Holmes marks the most up-to-date and extensive 758

consolidation of existing resources addressing the 759

need to assess the linguistic competence of LMs in 760

isolation. Our experiments demonstrate that LMs’ 761

linguistic competence is pronounced regarding for- 762

mal phenomena but lacks functional ones when 763

information about broader textual contexts, such as 764

rhetorical structure, is required. Further, size, ar- 765

chitecture, and instruction tuning crucially account 766

for differences among LMs. As LM and resources 767

in the landscape of linguistics continue to grow, 768

we will actively extend Holmes with further prob- 769

ing datasets, evaluate upcoming LMs, and plan to 770

incorporate multilingualism. 771

Ethical Considerations and Limitations 772

Language Holmes as well as FlashHolmes 773

solely assess linguistic phenomena for the English 774

language. As we plan to expand the benchmark and 775

scope of multilingual data, we focus momentarily 776

on English because of the widespread availability 777

of resources, including curated corpora and the 778

diversity of available LMs. 779

Phenomena and LM Coverage We agree with 780

Liang et al. (2023) and see one fundamental aspect 781

in composing a benchmark in acknowledging its 782

incompleteness. Both linguistic phenomena and 783

LMs are a subset of the variety of available re- 784

sources. We consolidated them carefully to provide 785

a comprehensive scope of the linguistic compe- 786

tence and various LMs. However, as benchmarks 787

evolve as tools to assess LMs, we will further ex- 788

pand Holmes both with the existing and upcoming 789

LMs and data resources. 790

Data Availability Linguistic annotations, in par- 791

ticular more complex ones targeting phenomena 792
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like discourse, are money and time-wise expen-793

sive. Out of 208 datasets included in Holmes,794

18 probing datasets are based on licensed re-795

sources and are not freely available. However, with796

FlashHolmes, we provide an effective and effi-797

cient alternative based on open-access resources.798

Furthermore, upon confirming the granted access,799

we are happy to share our probing datasets, includ-800

ing those based on the licensed resources.801

Bias As Holmes relies on existing resources, it802

inherits the bias embodied in this data. Examples803

of such bias are gender equality or gender fairness,804

like the use of neo pronouns such as em in Lauscher805

et al. (2023).806
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A Additional Details of Holmes1685

A.1 Additional Details on the Evolution of1686

Probing Literature1687

We analyze publication trends by year and venue1688

as shown in Table 2. Less work was published1689

between 2015-2018 (earlier) focusing on LSTM-1690

based (Linzen et al., 2016; Conneau et al., 2018)1691

and static LMs (Köhn, 2015; Linzen et al., 2016;1692

Belinkov et al., 2017; Conneau et al., 2018). With1693

the release of BERT (Devlin et al., 2019) in 2019,1694

we note increasing attention to analyzing linguistic1695

abilities within LMs, with a peak of 90 papers in1696

2022.5 Considering the venue, more than half of1697

the relevant work (149 papers) was published at1698

major conferences (ACL and EMNLP), and 681699

papers were published at AACL, EACL, NAACL,1700

and COLING.6 In addition, we observe a constant1701

contribution of TACL, various workshops, such as1702

Analyzing and Interpreting Neural Networks for1703

NLP or Representation Learning for NLP.1704

A.2 Experimental Details1705

Probing Hyperparameters Following previous1706

work (Hewitt and Liang, 2019; Voita and Titov,1707

2020), we use fixed hyperparameters for training1708

the probes: 20 epochs, where we find the best1709

one using dev instances; AdamW (Loshchilov and1710

Hutter, 2019) as optimizer; a batch size of 64; a1711

learning rate of 0.0005; a dropout rate of 0.2; a1712

warmup rate of 10% of the steps; random seeds:1713

[0, 1, 2, 3, 4]1714

Hardware We run all of our experiments using1715

12 Nvidia RTX A6000 GPUs. Every GPU provides1716

48GB of memory and 10752 CUDA Cores.1717

Considered LMs Table 8 outlines the details of1718

the LMs we evaluate on Holmes in this work.1719

A.3 Linguistic Task Categorization1720

We show in Table 3, Table 4, Table 7, Table 5,1721

and Table 6 which resources Holmes use to cover1722

morphology, syntax, semantics, reasoning, and dis-1723

course phenomena. This includes 33 works pro-1724

viding the data, the specific linguistic phenomena,1725

or both. For example, for readability we use the1726

data of Weischedel et al. (2013) and calculated the1727

flesch score (Flesch, 1948).1728

5Note that EMNLP-23 and AACL-23 proceedings were
not published when conducting this meta-analysis.

6Note that EMNLP-23 and AACL-23 proceedings were
not published when conducting this meta-study.

earlier 2019 2020 2021 2022 2023 Total

ACL 2 10 12 9 34 25 92
AACL - - - - 1 - 1
COLING - - 10 - 9 - 19
EACL - - - 7 - 15 22
EMNLP 2 4 13 17 21 - 57
NAACL - 3 - 9 14 - 26
TACL 1 1 2 3 3 1 11
Workshops 4 4 10 10 7 1 36
Other 1 2 1 1 1 4 10

Probing 10 24 48 56 90 46 274
All Papers 8,056 3,111 3,822 4,294 5,133 3,647 28,063

Table 2: Evolution of probing studies. Note that
EMNLP-23 and AACL-23 proceedings were not pub-
lished when conducting this meta-study.

Morphology First, we feature 19 tasks verifying 1729

morphology phenomena: Anaphor agreement, de- 1730

terminer noun agreement, subject-verb agreement 1731

and irregular forms (Warstadt et al., 2020; Huebner 1732

et al., 2021). 1733

Syntax The second group of 75 tasks verifies the 1734

following syntax phenomena: Part-of-speech tag- 1735

ging and constituent labeling (Weischedel et al., 1736

2013); dependency labeling (Silveira et al., 2014); 1737

bigram-shift, tree-depth, top-constituent-task, and 1738

sentence-length (Conneau et al., 2018); subject- 1739

& object-number, and deoncausative-inchoative 1740

alternation based on Klafka and Ettinger (2020); 1741

binding, control/raising, negative polarity item li- 1742

censing, island-effects, argument-structure, ellipsis, 1743

and filler-gap (Warstadt et al., 2020; Huebner et al., 1744

2021). 1745

Semantics Third, consider 67 tasks covering se- 1746

mantics phenomena: Named-entity labeling and 1747

semantic-role labeling (Weischedel et al., 2013); 1748

subject- and object-number, tense, semantic odd 1749

man out, word content, and coordination inver- 1750

sion (Conneau et al., 2018); semantic relation 1751

classification (Hendrickx et al., 2010); semantic 1752

proto-roles (Rudinger et al., 2018a); factuality 1753

(Rudinger et al., 2018b); genericity (Govindara- 1754

jan et al., 2019); event structure (Gantt et al., 1755

2022); time (Vashishtha et al., 2019); word sense 1756

(White et al., 2016); sentiment analysis (Socher 1757

et al., 2013); object- and subject-animacy, object- 1758

and subject-gender, verb-tense, and verb-dynamic 1759

Klafka and Ettinger (2020); metaphor (Mohler 1760

et al., 2016; Birke and Sarkar, 2006; Steen et al., 1761

2010); complex word identification (Paetzold and 1762

Specia, 2016); and passive (Krasnowska-Kieraś 1763

and Wróblewska, 2019). In addition, we derive 1764
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synonym-/antonym-detection task using WordNet1765

(Miller, 1995) and the texts from OntoNotes v51766

Weischedel et al. (2013).1767

Reasoning Forth, 19 tasks cover reasoning1768

phenomena: Paraphrasticity with negation and1769

antonyms (Vahtola et al., 2022); negation detec-1770

tion (Szarvas et al., 2008; Konstantinova et al.,1771

2012; Morante and Blanco, 2012); negation-span1772

classification (Szarvas et al., 2008; Konstantinova1773

et al., 2012); negation-correspondence (Szarvas1774

et al., 2008; Konstantinova et al., 2012); specula-1775

tion detection, speculation-span classification, and1776

speculation-correspondence (Szarvas et al., 2008);1777

and always-never, age comparison, objects com-1778

parison, antonym negation, property conjunction,1779

taxonomy connection, encyclopedic composition,1780

and multi-hop composition (Talmor et al., 2020).1781

Discourse Finally, Holmes embodies 28 task1782

addressing discourse phenomena: Co-reference1783

resolution Weischedel et al. (2013); bridging1784

(Hou, 2018, 2020; Pandit and Hou, 2021); dis-1785

course connective (Nie et al., 2019); sentence or-1786

der and next-sentence prediction (Narayan et al.,1787

2018); discourse correspondence, discourse or-1788

der, discourse relation, discourse distance, dis-1789

course explicit classes, discourse implicit classes1790

(Webber et al., 2019; Kurfalı and Östling, 2021);1791

and rst-count/-depth/-distance/-relation/-relation-1792

group/-successively/-type (Carlson et al., 2001;1793

Koto et al., 2021; Kurfalı and Östling, 2021; Zeldes,1794

2017).1795

A.4 Details of Probing Dataset Composition1796

Whenever possible, we rely on established prob-1797

ing datasets and transform instances into a unified1798

format: 1) an input x which is either one or a pair1799

of span(s) or sentence(s), including the string and1800

an optional starting and ending index in the con-1801

text c when task type is either a span or span-pair1802

classification; 2) an optional textual context c to1803

encode x, for example the sentence in which a span1804

occurs; and 3) a corresponding label y. If given,1805

we use the original train/dev/test splits. However,1806

if this division does not exist, we use a 70/10/201807

ratio to form these splits. Furthermore, we adapt1808

the design of some tasks to map to our task format.1809

Exemplary, for the oLMmpics (Talmor et al., 2020)1810

dataset, we transform the mask-filling tasks into a1811

binary classification where the correct label corre-1812

sponds to a sentence with a correctly filled mask1813

and incorrect to a sentence where the mask was 1814

filled wrongly. 1815

OnToNotes Following Tenney et al. (2019b,a), 1816

we use the OntoNotes (Weischedel et al., 2013) 1817

dataset to derive part-of-speech tagging, con- 1818

stituent labeling, named-entity labeling, semantic 1819

role, and co-reference resolution probing datasets. 1820

Further, we consider with constituent maximum 1821

depth and constituent node length further proper- 1822

ties of the constituent tree this dataset OntoNotes. 1823

Dependency Corpus As in Tenney et al. 1824

(2019b,a), we use Universal Dependencies anno- 1825

tations of the English Web Treebank to form a 1826

dependency labeling datasets. 1827

Context Probes Presented in Klafka and Ettinger 1828

(2020), we compose nine datasets to verify infor- 1829

mation about context words. 1830

BLiMP Dataset Using the data presented in the 1831

BLiMP benchmark (Warstadt et al., 2020), we de- 1832

rive 67 probing datasets verifying specific phenom- 1833

ena, like island effect, covering morphology, syn- 1834

tax, and semantics. Unlike the original version, 1835

we compose a binary classification task for every 1836

phenomenon. Precisely, whether to accept or reject 1837

a given sentence, where rejecting means that the 1838

given linguistic phenomena is violated. 1839

Zorro Dataset As for the BLiMP tasks, we con- 1840

vert the 21 distinct Zorro tasks into a binary classifi- 1841

cation task on whether a sentence accepts or rejects 1842

the given linguistic phenomena is violated. 1843

SemEval-2010 Task 8 For semantic relation 1844

classification we rely on the dataset of Hendrickx 1845

et al. (2010). 1846

Decompositional Semantics Initiative The De- 1847

compositional Semantics Initiative7 provides a 1848

large number of datasets to verify semantic phe- 1849

nomena. Apart of the common use semantic proto- 1850

roles (Rudinger et al., 2018a), we use their collec- 1851

tion of works to compose probing datasets for fac- 1852

tuality (Rudinger et al., 2018b), genericity (Govin- 1853

darajan et al., 2019), event structure (Vashishtha 1854

et al., 2019), time (Vashishtha et al., 2019), and 1855

word sense (White et al., 2016). 1856

Sentiment Analysis We use the commonly used 1857

work of Socher et al. (2013) and form a probing 1858

dataset targeting sentiment. 1859

7https://decomp.io/
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Metaphor As in Aghazadeh et al. (2022), we1860

use the data from Mohler et al. (2016); Birke and1861

Sarkar (2006); Steen et al. (2010) to form three1862

metaphor datasets.1863

Complex Word Identification We consider1864

word complexity for the first time and use the data1865

presented in Paetzold and Specia (2016). It pro-1866

vides annotations for different complexity levels of1867

words.1868

Passive We use data from Krasnowska-Kieraś1869

and Wróblewska (2019) to form a probing dataset1870

assessing knowledge about passive language.1871

Synonym / Antonym Replacement Using the1872

text of the OntoNotes (Weischedel et al., 2013)1873

and Wordnet (Miller, 1995), we form a probing1874

dataset to detect synonym and antonym replace-1875

ment. Specifically, the binary classification task is:1876

given two texts (the original and an updated one),1877

was the updated one changed by replacing a word1878

with its synonym or antonym?1879

Negation With this work, we verify for the first1880

time negation based on human annotated datasets1881

(Vahtola et al., 2022; Szarvas et al., 2008; Kon-1882

stantinova et al., 2012). Specifically, we form dif-1883

ferent probing datasets.1884

• Is a text negated or not?1885

• Given two text spans, does the negation within1886

the first one correspond to the second one?1887

• Given a text span, is it the cue or the scope of1888

the negation?1889

oLMmpics We form probing datasets addressing1890

different lexical reasoning using the data presented1891

in Talmor et al. (2020). As they provide multi-1892

ple choices, we form correct instances by filling1893

the gap with the correct option and wrong ones by1894

filling in the other options. Specifically, we form1895

dataset for always-never, age comparison, objects1896

comparison, antonym-negation, multi-hop compo-1897

sition property conjunction, taxonomy conjunction,1898

and encyclopedic composition.1899

Bridging We rely on the data presented in Pan-1900

dit and Hou (2021) and form two probing datasets.1901

One is to verify whether a text is linguistically ap-1902

plicable, considering bridging (antecedent matches1903

anaphora). And a second one to verify whether an1904

antecedent and anaphora match.1905

Discourse Connective Using data from Nie et al. 1906

(2019), we form a probing dataset to assess whether 1907

a given connective marker matches the discourse 1908

of the given text. 1909

Sentence Order and Next Sentence Prediction 1910

Following Narayan et al. (2018), we form two 1911

datasets to verify the order of good or badness of 1912

a given sentence and whether two sentences occur 1913

after each other. 1914

Discourse Representation Theory We use data 1915

from Webber et al. (2019) to compose eight prob- 1916

ing datasets addressing discourse representation 1917

theory: 1918

• Four probing dataset predicting the class of a 1919

given span. We distinguish between implicit, 1920

explicit, implicit-coarse, and explicit-coarse. 1921

• The absolute distance, number of words, be- 1922

tween two spans in the text. 1923

• Whether the order of two spans is correct or 1924

not. 1925

• Whether two spans have discourse relation or 1926

not. 1927

• The specific discourse relation of two spans. 1928

Rhetorical Structure Theory Using annotations 1929

from Carlson et al. (2001); Zeldes (2017), we com- 1930

pose 14 probing datasets addressing rhetorical the- 1931

ory. Specifically, we compose the following seven 1932

types of datasets for both works: 1933

• The rhetorical type of a text span, either nu- 1934

cleus or satellite. 1935

• The number of children of a text span within 1936

the rhetorical tree of the text. 1937

• The depth of a text span within the rhetorical 1938

tree of the text. 1939

• The number of edges between two text spans 1940

within the rhetorical tree. 1941

• The specific rhetorical relation between two 1942

text spans like conclusion. 1943

• The relation group of a specific rhetorical re- 1944

lation between two text spans like evaluation 1945

for the relation conclusion. 1946

• Whether two text spans occur after each other 1947

in the rhetorical tree. 1948
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anaphor agreement 3 ✓ ✓
determiner noun agreement 10 ✓ ✓
irregular forms 3 ✓ ✓
subject-verb agreement 10 ✓ ✓

Table 3: Overview of resources and linguistic phenom-
ena mapping for morphology. It shows the number of
datasets for the phenomena by dataset type.
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argument-structure 20 ✓ ✓
bigram-shift 1 ✓
binding 8 ✓ ✓
case 1 ✓
constituent parsing 2 1 ✓
control/raising 5 ✓ ✓
deoncausative-inchoative alternation 1 ✓
dependency parsing 1 ✓
ellipsis 3 ✓ ✓
filler-gap 9 ✓ ✓
island-effects 10 ✓ ✓
local attractor 1 ✓
object-number 2 ✓ ✓
part-of-speech 3 ✓ ✓
readability 1 ✓ ✓
sentence-length 1 ✓
subject-number 2 ✓ ✓
top-constituent-task 1 ✓
tree-depth 1 ✓

Table 4: Overview of resources and linguistic phenom-
ena mapping for syntax. It shows the number of datasets
for the phenomena by dataset type.
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age comparison 1 ✓
always-never 1 ✓
antonym negation 1 ✓
encyclopedic composition 1 ✓
multi-hop composition 1 ✓
negation 3 1 2 2 ✓ ✓ ✓ ✓
objects comparison 1 ✓
property conjunction 1 ✓
speculation 1 1 1 ✓
taxonomy connection 1 ✓

Table 5: Overview of resources and linguistic phenom-
ena mapping for reasoning. It shows the number of
datasets for the phenomena by dataset type.
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bridging 1 1 ✓
co-reference resolution 1 ✓
discourse connective 1 ✓
discourse representation theory 8 ✓
next-sentence prediction 1 ✓
rethorical structure theory 6 8 ✓ ✓
sentence order 1 ✓

Table 6: Overview of resources and linguistic phenom-
ena mapping for discourse. It shows the number of
datasets for the phenomena by dataset type.
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complex word identification 1 ✓
coordination inversion 1 ✓
event structure 4 2 ✓
factuality 1 ✓
genericity 6 ✓
metaphor 4 ✓ ✓ ✓
named-entity labeling 1 ✓
negative polarity item licensing 4 ✓ ✓
object-animacy 1 ✓
object-gender 1 ✓
passive 1 ✓
quantifiers 6 ✓
semantic relation classification 1 ✓
semantic proto-roles 20 ✓
semantic odd man out 1 ✓
semantic-role labeling 1 ✓
sentiment analysis 1 ✓
subject-animacy 1 ✓
subject-gender 1 ✓
synonym-/antonym-detection 1 ✓
tense 2 ✓ ✓
time 1 ✓
verb-dynamic 1 ✓
word content 1 ✓
word sense 1 ✓

Table 7: Overview of resources and linguistic phenomena mapping for semantics. It shows the number of datasets
for the phenomena by dataset type.
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Model Citation Size Pre-Training Objective Pre-Training Data Huggingface Tag
Encoder-Only Language Models

ALBERT Lan et al. (2020) 10 million MLM+SOP 16GB albert-base-v2
BERT Tenney et al. (2019a) 110 million MLM+NSP 16GB bert-base-uncased
DeBERTa He et al. (2021) 100 million MLM 80GB microsoft/deberta-base
DeBERTa-v3 He et al. (2023) 86 million MLM+DISC 160GB microsoft/deberta-v3-base
ELECTRA Clark et al. (2020) 110 million MLM 16GB google/electra-base-discriminator
RoBERTa Liu et al. (2019) 110 million MLM+DISC 160GB roberta-base

Decoder-Only Language Models
GPT2 Radford et al. (2019) 117 million LM 40GB gpt2
Pythia-70m Biderman et al. (2023) 70 million LM 300 billion tokens EleutherAI/pythia-70m
Pythia-160m Biderman et al. (2023) 160 million LM 300 billion tokens EleutherAI/pythia-160m
Pythia-410m Biderman et al. (2023) 410 million LM 300 billion tokens EleutherAI/pythia-410m
Pythia-1b Biderman et al. (2023) 1 billion LM 300 billion tokens EleutherAI/pythia-1B
Pythia-1.4b Biderman et al. (2023) 1.4 billion LM 300 billion tokens EleutherAI/pythia-1.4B
Pythia-2.8b Biderman et al. (2023) 2.8 billion LM 300 billion tokens EleutherAI/pythia-2.8B
Pythia-6.9b Biderman et al. (2023) 6.9 billion LM 300 billion tokens EleutherAI/pythia-6.9B
Pythia-12b Biderman et al. (2023) 12 billion LM 300 billion tokens EleutherAI/pythia-12B
Pythia-70m-dedup Biderman et al. (2023) 70 million LM 207 billion tokens EleutherAI/pythia-70m-deduped
Pythia-160m-dedup Biderman et al. (2023) 160 million LM 207 billion tokens EleutherAI/pythia-160m-deduped
Pythia-410m-dedup Biderman et al. (2023) 410 million LM 207 billion tokens EleutherAI/pythia-410m-deduped
Pythia-1b-dedup Biderman et al. (2023) 1 billion LM 207 billion tokens EleutherAI/pythia-1B-deduped
Pythia-1.4b-dedup Biderman et al. (2023) 1.4 billion LM 207 billion tokens EleutherAI/pythia-1.4B-deduped
Pythia-2.8b-dedup Biderman et al. (2023) 2.8 billion LM 207 billion tokens EleutherAI/pythia-2.8B-deduped
Pythia-6.9b-dedup Biderman et al. (2023) 6.9 billion LM 207 billion tokens EleutherAI/pythia-6.9B-deduped
Pythia-12b-dedup Biderman et al. (2023) 12 billion LM 207 billion tokens EleutherAI/pythia-12B-deduped
Dolly-v2 Conover et al. (2023) 12 billion LM+IT 300 billion token + 15K instructions databricks/dolly-v2-12b
Llama-2-7b Touvron et al. (2023) 7 billion LM 2.4 trillion tokens meta-llama/Llama-2-7b-hf
Llama-2-13b Touvron et al. (2023) 13 billion LM 2.4 trillion tokens meta-llama/Llama-2-13b-hf
Llama-2-70b Touvron et al. (2023) 70 billion LM 2.4 trillion tokens meta-llama/Llama-2-70b-hf
Llama-2-7b-chat Touvron et al. (2023) 7 billion LM+IT 2.4 trillion tokens + 27,5K instructions meta-llama/Llama-2-7b-chat-hf
Llama-2-13b-chat Touvron et al. (2023) 13 billion LM+IT 2.4 trillion tokens + 27,5K instructions meta-llama/Llama-2-13b-chat-hf
Llama-2-70b-chat Touvron et al. (2023) 70 billion LM+IT 2.4 trillion tokens + 27,5K instructions meta-llama/Llama-2-70b-chat-hf
IBM-Merlinite Sudalairaj et al. (2024) 7 billion LM+IT 2.4 trillion tokens + 1400k instructions ibm/merlinite-7b
IBM-Labradorite Sudalairaj et al. (2024) 13 billion LM+IT 2.4 trillion tokens + 1400k instructions ibm/labradorite-13b
Vicuna-13b-v1.5 Zheng et al. (2023) 13 billion LM+IT 2.4 trillion tokens + 125k instructions lmsys/vicuna-13b-v1.5
Orca-2-13b Mitra et al. (2023) 13 billion LM+IT 2.4 trillion tokens + 817K instructions microsoft/Orca-2-13b
Wizard-13B-v1.2 Xu et al. (2023) 13 billion LM unknown WizardLM/WizardLM-13B-V1.2
Tülu-2-13b Wang et al. (2023) 13 billion LM+IT 2.4 trillion tokens + 330k instructions allenai/tulu-2-13b
Tülu-2-dpo-13b Wang et al. (2023) 13 billion LM+IT 2.4 trillion tokens + 330k instructions tulu-2-dpo-13b
Tülu-2-70b Wang et al. (2023) 70 billion LM+IT 2.4 trillion tokens + 330k instructions allenai/tulu-2-70b
Tülu-2-dpo-70b Wang et al. (2023) 70 billion LM+IT 2.4 trillion tokens + 330k instructions tulu-2-dpo-70b
Mistral-7b Jiang et al. (2023) 7 billion LM unknown mistralai/Mistral-7B-v0.1
Mistral-7b-Inst Jiang et al. (2023) 7 billion LM unknown mistralai/Mistral-7B-Instruct-v0.1
Mixtral-8x7b Jiang et al. (2024) 47 billion LM unknown mistralai/Mixtral-8x7B-v0.1
Mixtral-8x7b-Inst Jiang et al. (2024) 47 billion LM unknown mistralai/Mistral-7B-v0.1

Encoder-Decoder Language Models
BART Lewis et al. (2020) 121 million DAE 160GB google/facebook/bart-base
T5-small Raffel et al. (2020) 60 million DAE 800GB google/t5-small-lm-adapt
T5-base Raffel et al. (2020) 220 million DAE 800GB google/t5-base-lm-adapt
T5-large Raffel et al. (2020) 770 million DAE 800GB google/t5-large-lm-adapt
T5-xl Raffel et al. (2020) 3 billion DAE 800GB google/t5-xl-lm-adapt
T5-xxl Raffel et al. (2020) 11 billion DAE 800GB google/t5-xxl-lm-adapt
FLAN-T5-small Raffel et al. (2020) 60 million DAE+IT 800GB + 1.8k tasks google/t5-small-lm-adapt
FLAN-T5-base Raffel et al. (2020) 220 million DAE+IT 800GB + 1.8k tasks google/t5-base-lm-adapt
FLAN-T5-large Raffel et al. (2020) 770 million DAE+IT 800GB + 1.8k tasks google/t5-large-lm-adapt
FLAN-T5-xl Raffel et al. (2020) 3 billion DAE+IT 800GB + 1.8k tasks google/t5-xl-lm-adapt
FLAN-T5-xxl Raffel et al. (2020) 11 billion DAE+IT 800GB + 1.8k tasks google/t5-xxl-lm-adapt
TK-Instruct Wang et al. (2022) 11 billion billion DAE+IT 800GB + 1.6k tasks allenai/tk-instruct-11b-def
UL2 Tay et al. (2023) 20 billion DAE 800GB google/ul2
FLAN-UL2 Tay et al. (2023) 20 billion DAE+IT 800GB + 100k instructions google/flan-ul2

Static Language Models
Glove-6B Pennington et al. (2014) - WP 6 billion tokens glove.6B.300d
Glove-840B Pennington et al. (2014) - WP 840 billion tokens glove.840B.300d

Table 8: Overview of the evaluated LMS covering the corresponding citation, model size, model architecture,
pre-training objective & data, and the Huggingface model tag. Regarding the pre-training objective, we distinguish
between masked language modeling (MLM), sentence order prediction (SOP), next sentence prediction (NSP),
next word prediction (LM), instruction fine-tuning (IT), word denoising (DAE), and word probabilities from word
co-occurrences (WP). For pre-training data, we report known numbers, either as the size of the corpora in gigabytes
(GB), the number of pre-training tokens, the number of instructions for fine-tuning, or the number of tasks for
instruction fine-tuning.
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